Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mycobiology ; : 44-47, 2017.
Article in English | WPRIM | ID: wpr-729889

ABSTRACT

Ginseng damping-off, caused by the fungal pathogens Rhizoctonia solani and Pythium sp., is a critical disease in ginseng seedling. In a continuing effort to find microorganisms with the potential of acting as a biocontrol agent against Rhizoctonia damping-off, we found that a Streptomyces sp. A501 showed significant antifungal activity against Rhizoctonia solani. In field experiment to test the efficacy of Streptomyces sp. A501 in controlling ginseng damping-off, the incidence of damping-off disease was meaningfully reduced when ginseng seeds were soaked in the culture broth of Streptomyces sp. A501 before sowing. To perform characterization of the antifungal compound, we isolated it from the culture broth of strain A501 through Diaion HP-20 and silica gel column chromatographies and preparative high-performance liquid chromatography. The structure of the antifungal compound was assigned as fungichromin by spectroscopic methods, mainly nuclear magnetic resonance and electrospray ionization-mass analysis.


Subject(s)
Chromatography , Chromatography, Liquid , Incidence , Magnetic Resonance Spectroscopy , Panax , Pythium , Rhizoctonia , Seedlings , Silica Gel , Streptomyces
2.
Immune Network ; : 331-336, 2015.
Article in English | WPRIM | ID: wpr-92646

ABSTRACT

Ginsenosides are the major components of ginseng, which is known to modulate blood pressure, metabolism, and immune function, and has been used to treat various diseases. It has been reported that ginseng and several ginsenosides have immunoregulatory effects on the innate and T cell-mediated immune response. However, their effects on the humoral immune response have not been fully explored. The present study examined the direct effects of red ginseng extract (RGE) and ginsenosides on mouse B cell proliferation and on antibody production and the expression of germline transcripts (GLT) by mouse B cells in vitro. RGE slightly reduced B cell proliferation, but increased IgA production by LPS-stimulated B cells. Furthermore, ginsenoside Rg1 and 20(S)-Rg3 selectively induced IgA production and expression of GLTalpha transcripts by LPS-stimulated B cells. Collectively, these results suggest that ginsenoside Rg1 and 20(S)-Rg3 can drive the differentiation of B cells into IgA-producing cells through the selective induction of GLTalpha expression.


Subject(s)
Animals , Mice , Antibody Formation , B-Lymphocytes , Blood Pressure , Cell Proliferation , Ginsenosides , Immunity, Humoral , Immunoglobulin A , Metabolism , Panax
SELECTION OF CITATIONS
SEARCH DETAIL